第九十四章 林曉是哪種圖像?
對于薩納克教授來說,看論文是一件很經(jīng)常的事情,畢竟作為《數(shù)學(xué)年刊》的主編,需要他審稿的論文是很多的。</br> 尤其是那些有潛力登上《數(shù)學(xué)年刊》的投稿,不管是符合他研究領(lǐng)域的,還是不符合他研究領(lǐng)域的,他很多都看過。</br> 所以現(xiàn)在讓他來看林曉的這篇報告,也算是找對人了,尤其是這種數(shù)論領(lǐng)域的成果。</br> 他當(dāng)初拿到沃爾夫數(shù)學(xué)獎,就和他在數(shù)論領(lǐng)域做出的貢獻有關(guān)。</br> 同樣,也正如蓬皮埃利教授說的那樣,沒有哪個數(shù)學(xué)家不會對這些素數(shù)問題感到有興趣,畢竟它們看起來是那么的簡單明了,不就是一個個的正整數(shù)嘛,雖然在解決問題的過程中少不了要用到各種奇形怪狀甚至是繁雜的數(shù)學(xué)符號,有時候也得用上根號來讓它變得不再是整數(shù),但是總歸看上去很簡潔嘛!</br> 不然的話,為什么民科們熱衷于解決哥德巴赫猜想而不是黎曼猜想?</br> 因為他們憑借自己九年義務(wù)教育得到的知識都能看懂哥德巴赫猜想,于是就憑借著一腔膽識沖了上去。</br> 至于黎曼猜想,他們大概還得問一下這個ζ函數(shù)是個啥,更不用說其中還涉及到了復(fù)平面、復(fù)分析之類的,這讓他們來搞,哪怕是想要找個地方入手,恐怕還得去學(xué)習(xí)一下復(fù)分析,而學(xué)習(xí)復(fù)分析之前還得學(xué)一下數(shù)學(xué)分析,只不過學(xué)完這些之后,他們大概就清楚自己曾經(jīng)的想法有多年少無知了。</br> 總而言之,素數(shù)問題看起來很簡潔,梅森素數(shù)也是如此,以至于薩納克教授也曾經(jīng)研究過這些東西。</br> 不過,林曉的這篇論文中,解決梅森素數(shù)的問題是在最后的十頁中,前面六十多頁,主要就是討論將模形式論和群論結(jié)合,從而實現(xiàn)對多項式的變換。</br> 所以薩納克教授現(xiàn)在看的就是這個部分。</br> “嗯……前面這個變換,似乎有點意思,好像就是他那篇論文里面的方法?嗯,是整理出來了嘛。”</br> 看到這,他無奈地搖搖頭,其實到這里就行了,林曉已經(jīng)可以將前面這部分內(nèi)容作為報告,到時候在大會上進行演講了,這也是薩納克教授當(dāng)初以為林曉要搞的。</br> 只不過,現(xiàn)在也才到第十三頁,后面還有一大堆呢。</br> 這個林曉,搞出的到底是什么騷操作啊……</br> 他總算知道為什么維亞納教授會找他來看林曉的這篇報告了,大概是維亞納教授也覺得林曉不按套路出牌,于是就找他這個始作俑者來看看該如何處理。</br> 輕輕搖搖頭,那還能咋辦,只能繼續(xù)看唄。</br> 但他還是希望,自己能收到最后的那份‘喜’,不論如何,那也是自己看中的年輕人嘛。</br> 而后,他便繼續(xù)往下看去。</br> 很快,他看到一行式子。</br> 【tr(ρf,λ(Frobp))=C(p,f)…det(ρf,λ(Frobp))=Ψ?(p)N(p)^k0?1……】m.</br> “這一步……有點意思。”</br> 他又往下面看去。</br> 【ρf,λ:=ρf,λ(modλ):GF→GL2(Fλ)……】</br> 越看,他的眼睛也越發(fā)湊近了屏幕,想讓自己看得更加清楚一些。</br> 因為,到這附近的變換,他的思維也隨之跟進,腦海中也仿佛有兩根弦,忽然接在了一起,然后奏響了起來。</br> 這一步,讓他也感到了驚嘆!</br> “竟然還能用這種方法,實在是有些太不可思議了,或者說……太大膽了!”</br> 他默念著,腦袋也跟著感慨似的搖晃起來。</br> “這年輕人的想法,真是和我這種老家伙都不一樣了。”</br> 忽然想起什么,他又從旁邊那扯來了草稿紙,開始演算起來。</br> 就這樣,時間慢慢過去,辦公室里,薩納克教授的其他學(xué)生看著薩納克教授的樣子,都不知道他為何如此感慨。</br> 他以前審稿的時候可沒有過這種情況啊?</br> 有一位研究生借著幫教授泡咖啡的名義,走上去拿起薩納克的咖啡杯,然后往電腦上瞅了一眼,看了一會兒后,他也茫然了,這又是哪位大佬的論文?</br> 這好像是數(shù)論吧,又不像是數(shù)論,其中還有一些同態(tài)群構(gòu)造,好像還有一點模形式的理論在里面,難不成是哪位研究朗蘭茲綱領(lǐng)的大牛?</br> 這位普林斯頓大學(xué)數(shù)學(xué)在讀博士放棄了思考,選擇老老實實地給教授泡咖啡去了。</br> 就這樣,時間慢慢過去。</br> 七十多頁的論文,當(dāng)然很長,雖然前面十幾頁比較好理解,很快就能夠看完,但是中間的四十多頁可就沒有這么容易了,由于已經(jīng)涉及到了一種新的數(shù)學(xué)方法,所以薩納克教授也得嚴謹對待。</br> 東海岸的風(fēng)從白天吹到了傍晚,直到太陽消失在普林斯頓這座充滿了鄉(xiāng)村風(fēng)光的城際線西邊時,辦公室內(nèi),薩納克教授終于抬起了自己的頭。</br> “大概,高斯當(dāng)初也是這樣的驚才絕艷吧……”</br> 他微微慨嘆一聲,從這篇論文中,他看到了大數(shù)學(xué)家的思想在其中迸發(fā),仿佛真理于其中孕育。</br> 歷史上所有著名的科學(xué)家們,人生中最重要的成果都是于20到40歲之間作出的,比如愛因斯坦的相對論,再比如牛頓的微積分、萬有引力定律等等。</br> 而這個林曉,如今才18歲,卻已經(jīng)創(chuàng)造出了這般極其出色的數(shù)學(xué)理論,并且終結(jié)了梅森素數(shù)分布規(guī)律這個問題。</br> 從兩千三百年前,幾何之父歐幾里得開始對這個問題進行研究以來,直到如今不知道多少大數(shù)學(xué)家們前赴后繼,不斷地嘗試在2^p-1這個極其簡單的形式上實現(xiàn)突破,直到如今,終于在這個十八歲的少年手上完成了最后的成果。</br> 如果說這就是林曉的巔峰時期,薩納克教授自然是不信的。</br> 要是用正態(tài)分布的圖像來說的話,他認為,林曉此時的狀態(tài),正處于圖像左邊的某個地方,距離最高的位置,仍然還有很長的一段距離。</br> 不過,這也只是他所認為的而已,至于林曉真的是正態(tài)分布圖像,還是y=x2(x&gt;0),那就不得而知了。
三月,初春。</p>
南凰洲東部,一隅。</p>
陰霾的天空,一片灰黑,透著沉重的壓抑,仿佛有人將墨水潑灑在了宣紙上,墨浸了蒼穹,暈染出云層。</p>
云層疊嶂,彼此交融,彌散出一道道緋紅色的閃電,伴隨著隆隆的雷聲。</p>
好似神靈低吼,在人間回蕩。</p>
,。血色的雨水,帶著悲涼,落下凡塵。</p>
大地朦朧,有一座廢墟的城池,在昏紅的血雨里沉默,毫無生氣。</p>
城內(nèi)斷壁殘垣,萬物枯敗,隨處可見坍塌的屋舍,以及一具具青黑色的尸體、碎肉,仿佛破碎的秋葉,無聲凋零。</p>
往日熙熙攘攘的街頭,如今一片蕭瑟。</p>
曾經(jīng)人來人往的沙土路,此刻再無喧鬧。</p>
只剩下與碎肉、塵土、紙張混在一起的血泥,分不出彼此,觸目驚心。</p>
不遠,一輛殘缺的馬車,深陷在泥濘中,滿是哀落,唯有車轅上一個被遺棄的兔子玩偶,掛在上面,隨風(fēng)飄搖。</p>
白色的絨毛早已浸成了濕紅,充滿了陰森詭異。</p>
渾濁的雙瞳,似乎殘留一些怨念,孤零零的望著前方斑駁的石塊。</p>
那里,趴著一道身影。</p>
這是一個十三四歲的少年,衣著殘破,滿是污垢,腰部綁著一個破損的皮袋。</p>
少年瞇著眼睛,一動不動,刺骨的寒從四方透過他破舊的外衣,襲遍全身,漸漸帶走他的體溫。</p>
可即便雨水落在臉上,他眼睛也不眨一下,鷹隼般冷冷的盯著遠處。</p>
順著他目光望去,距離他七八丈遠的位置,一只枯瘦的禿鷲,正在啃食一具野狗的腐尸,時而機警的觀察四周。</p>
似乎在這危險的廢墟中,半點風(fēng)吹草動,它就會瞬間騰空。</p>
而少年如獵人一樣,耐心的等待機會。</p>
良久之后,機會到來,貪婪的禿鷲終于將它的頭,完全沒入野狗的腹腔內(nèi)。</br>,,。,。</br>